
flowws Documentation
Release 0.5.2

Matthew Spellings

Sep 01, 2022

Contents

1 Introduction 3
1.1 Installation . 3
1.2 Documentation . 3
1.3 Examples . 4

2 Indices and tables 9

Python Module Index 11

Index 13

i

ii

flowws Documentation, Release 0.5.2

Contents 1

https://flowws.readthedocs.io/en/latest/

flowws Documentation, Release 0.5.2

2 Contents

CHAPTER 1

Introduction

flowws is an in-development framework for building modular, reusable task workflows. The core library contains
tools to abstract over storage locations and parse arguments in a uniform way for both python scripts and command-
line-based execution. It is designed to help solve the following problems:

• Composing tasks from a series of modular actions

• Parameterizing tasks and exposing interfaces for both interactive and batch execution

• Improving reproducibility by encapsulating parameters within workflow definitions

flowws is being developed in conjunction with other projects, including:

• hoomd-flowws: perform simulations with hoomd-blue.

• flowws-analysis: run analysis and visualization workflows

• flowws-freud: molecular simulation-specific modules for flowws-analysis

• flowws-examples: example workflows using the above projects

1.1 Installation

Install flowws from PyPI:

pip install flowws

Alternatively, install from source:

pip install git+https://github.com/klarh/flowws.git#egg=flowws

1.2 Documentation

Browse more detailed documentation online or build the sphinx documentation from source:

3

https://github.com/klarh/hoomd_flowws
https://github.com/glotzerlab/hoomd-blue
https://github.com/klarh/flowws-analysis
https://github.com/klarh/flowws-freud
http://github.com/klarh/flowws-examples
https://flowws.readthedocs.io

flowws Documentation, Release 0.5.2

git clone https://github.com/klarh/flowws
cd flowws/doc
pip install -r requirements.txt
make html

1.3 Examples

The flowws-examples project contains interactive notebook examples that demonstrate various workflows.

1.3.1 Workflows and Stages

class flowws.Workflow(stages, storage=None, scope={})
Specify a complete sequence of operations to perform.

Workflow objects specify a sequence of stages (operations to perform) and a storage object to use (which could
be a database, archive file, or simply a directory on the filesystem). In addition to direct creation within python,
Workflows can be deserialized from command line and JSON-based descriptions.

Stages are executed sequentially in the order they are given and each stage can pass information to later stages
in a freeform way by settings elements of a scope, which is a dictionary of named values.

Parameters

• stages – List of Stage objects specifying the operations to perform

• storage – Storage object specifying where results should be saved (default: create a
DirectoryStorage using the current working directory)

• scope – Dictionary of key-value pairs specifying external input parameters

classmethod from_JSON(json_object, module_names=’flowws_modules’)
Construct a Workflow from a JSON object.

classmethod from_command(args=None, module_names=’flowws_modules’, scope={})
Construct a Workflow from a command-line description.

Stages are found based on setuptools entry_point specified under module_names.

Parameters

• args – List of command-line arguments (list of strings)

• module_names – setuptools entry_point to use for module searches

• scope – Dictionary of initial key-value pairs to pass to child Stages

classmethod register_module(*args, module_names=’flowws_modules’, name=None)
Register a named module to be loaded inside from_JSON or other functions.

This method is intended to be used as a decorator for Stage classes in situations such as REPL loops or
notebooks, where modules need to be deserialized without necessarily creating a standalone package and
registering the endpoints through the setuptools machinery.

Examples:

@flowws.Workflow.register_module
class TestStage(flowws.Stage):

pass
(continues on next page)

4 Chapter 1. Introduction

http://github.com/klarh/flowws-examples

flowws Documentation, Release 0.5.2

(continued from previous page)

@flowws.Workflow.register_module(name='OverruledName')
class Stage(flowws.Stage):

pass

run()
Run each stage inside this workflow.

Returns the scope after running all stages.

class flowws.Stage(**kwargs)
Base class for the building blocks of workflows.

Stage objects specify a discrete set of operations within a Workflow. Each Stage object has its own set of
parameters and functionality that are then run in sequence when the workflow is run.

Stages can be instantiated within python by directly passing in arguments they take as keyword arguments, for
example:

stages = [Initialize(seed=13), Run(parameter=1.5)]

Stages also can be instantiated from the command line using flowws.run (assuming they have been properly
registered using setuptools entry_points):

python -m flowws.run Initialize --seed 13 Run --parameter 1.5

classmethod from_JSON(json_object)
Initialize this stage from a JSON representation

classmethod from_command(args)
Initialize this stage from a command-line description

run(scope, storage)
Run the contents of this stage

flowws.register_module(*args, module_names=’flowws_modules’, name=None)
Register a named module to be loaded inside from_JSON or other functions.

This method is intended to be used as a decorator for Stage classes in situations such as REPL loops or note-
books, where modules need to be deserialized without necessarily creating a standalone package and registering
the endpoints through the setuptools machinery.

Examples:

@flowws.Workflow.register_module
class TestStage(flowws.Stage):

pass

@flowws.Workflow.register_module(name='OverruledName')
class Stage(flowws.Stage):

pass

flowws.try_to_import(pkg, name, current_pkg=None)
Import an attribute from a module, or return an error-producing fake.

This method is provided as a convenience for libraries that want to easily expose modules with a variety of
prerequisite libraries without forcing the user to install prerequisites for the modules they do not use. The fake
is produced if an import fails while importing the given package.

Parameters

1.3. Examples 5

flowws Documentation, Release 0.5.2

• name – Name of the attribute to return from the module

• pkg – Package name (can be relative)

• current_pkg – Name of the current package to use (i.e. if pkg is relative)

Returns Either the attribute from the successfully-imported module, or a fake module object that
will produce an error if evaluated

1.3.2 Command Line Utilities

flowws.run

Directly run a user-defined workflow from the command line

The flowws.run utility is used to execute a workflow from a brief, text-only description. It works by finding modules
installed using a particular setuptools entry_point, which each parse their own command-line parameters in their own
way. Automatically-generated documentation can be accessed in the standard way for flowws.run via:

python -m flowws.run -h

Automatically-generated documentation for any module (for this example, simply named Module) as:

python -m flowws.run Module -h

A complete workflow specification using modules Module1 and Module2 may look something like this:

python -m flowws.run Module1 --param-1 x --param-2 y Module2

JSON workflows defined by flowws.freeze can also be executed using flowws.run:

python -m flowws.run workflow.json

A flowws_run script is also installed for this command for convenience.

flowws.freeze

Save a user-defined workflow from the command line for later execution

The flowws.freeze utility is used to store a workflow description in JSON form. It finds and parameterizes modules
identically to flowws.run, but saves the result to a file to run later rather than immediately executing the workflow.
Before the workflow definition, it takes a single argument specifying the location to store the resulting JSON file:

python -m flowws.freeze workflow.json Module1 Module2

A flowws_freeze script is also installed for this command for convenience.

1.3.3 Storage API

class flowws.Storage.Storage
Base class for file storage.

Storage objects expose methods for reading and writing of files which could actually be backed by a database
or archive file, for example.

6 Chapter 1. Introduction

flowws Documentation, Release 0.5.2

open(filename, mode=’r’, modifiers=[], on_filesystem=False, noop=False)
Open a file stored within this object.

Parameters

• filename – Name of the (internal) file

• mode – One of ‘r’ (read), ‘w’ (write/overwrite), ‘a’ (append) and, optionally, ‘b’ (open in
binary mode)

• modifiers – List of filename modifiers which will be appended to the filename, respect-
ing the file suffix

• on_filesystem – If True, the file must exist as a real file on the filesystem; otherwise,
a python stream object may be returned

• noop – If True, return a dummy file object instead that does nothing

open_file(full_name, mode)
Open a file stored within this object as a real file on the filesystem.

The default implementation simply copies a stream object onto the filesystem.

open_stream(full_name, mode)
Open a file stored within this object as a stream.

class flowws.DirectoryStorage(root=’.’, group=None)
Stores files directly on the filesystem.

open_file(full_name, mode)
Open a file stored within this object as a real file on the filesystem.

The default implementation simply copies a stream object onto the filesystem.

open_stream(full_name, mode)
Open a file stored within this object as a stream.

class flowws.GetarStorage(target, group=None)
Class to store files as records of getar-format files.

These can be zip, tar, or sqlite-formatted archives. Note that zip and tar files will currently accumulate copies of
files as they are appended to or overwritten.

open_stream(full_name, mode)
Open a file stored within this object as a stream.

1.3. Examples 7

flowws Documentation, Release 0.5.2

8 Chapter 1. Introduction

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

flowws Documentation, Release 0.5.2

10 Chapter 2. Indices and tables

Python Module Index

f
flowws.freeze, 6
flowws.run, 6

11

flowws Documentation, Release 0.5.2

12 Python Module Index

Index

D
DirectoryStorage (class in flowws), 7

F
flowws.freeze (module), 6
flowws.run (module), 6
from_command() (flowws.Stage class method), 5
from_command() (flowws.Workflow class method), 4
from_JSON() (flowws.Stage class method), 5
from_JSON() (flowws.Workflow class method), 4

G
GetarStorage (class in flowws), 7

O
open() (flowws.Storage.Storage method), 6
open_file() (flowws.DirectoryStorage method), 7
open_file() (flowws.Storage.Storage method), 7
open_stream() (flowws.DirectoryStorage method), 7
open_stream() (flowws.GetarStorage method), 7
open_stream() (flowws.Storage.Storage method), 7

R
register_module() (flowws.Workflow class

method), 4
register_module() (in module flowws), 5
run() (flowws.Stage method), 5
run() (flowws.Workflow method), 5

S
Stage (class in flowws), 5
Storage (class in flowws.Storage), 6

T
try_to_import() (in module flowws), 5

W
Workflow (class in flowws), 4

13

	Introduction
	Installation
	Documentation
	Examples

	Indices and tables
	Python Module Index
	Index

