

Welcome to flowws’s documentation!

[image: ReadTheDocs]
 [https://flowws.readthedocs.io/en/latest/]

Introduction

flowws is an in-development framework for building modular, reusable
task workflows. The core library contains tools to abstract over
storage locations and parse arguments in a uniform way for both python
scripts and command-line-based execution. It is designed to help solve
the following problems:

	Composing tasks from a series of modular actions

	Parameterizing tasks and exposing interfaces for both interactive and batch execution

	Improving reproducibility by encapsulating parameters within workflow definitions

flowws is being developed in conjunction with other projects, including:

	hoomd-flowws [https://github.com/klarh/hoomd_flowws]: perform simulations with hoomd-blue [https://github.com/glotzerlab/hoomd-blue].

	flowws-analysis [https://github.com/klarh/flowws-analysis]: run analysis and visualization workflows

	flowws-freud [https://github.com/klarh/flowws-freud]: molecular simulation-specific modules for flowws-analysis

	flowws-examples [http://github.com/klarh/flowws-examples]: example workflows using the above projects

Installation

Install flowws from PyPI:

pip install flowws

Alternatively, install from source:

pip install git+https://github.com/klarh/flowws.git#egg=flowws

Documentation

Browse more detailed documentation
online [https://flowws.readthedocs.io] or build the sphinx
documentation from source:

git clone https://github.com/klarh/flowws
cd flowws/doc
pip install -r requirements.txt
make html

Examples

The flowws-examples [http://github.com/klarh/flowws-examples] project
contains interactive notebook examples that demonstrate various
workflows.

Contents

	Workflows and Stages

	Command Line Utilities
	flowws.run

	flowws.freeze

	Storage API

Indices and tables

	Index

	Module Index

	Search Page

Workflows and Stages

	
class flowws.Workflow(stages, storage=None, scope={})

	Specify a complete sequence of operations to perform.

Workflow objects specify a sequence of stages (operations to
perform) and a storage object to use (which could be a database,
archive file, or simply a directory on the filesystem). In
addition to direct creation within python, Workflows can be
deserialized from command line and JSON-based descriptions.

Stages are executed sequentially in the order they are given and
each stage can pass information to later stages in a freeform way
by settings elements of a scope, which is a dictionary of named
values.

	Parameters:

	
	stages – List of Stage objects specifying the operations to perform

	storage – Storage object specifying where results should be saved (default: create a DirectoryStorage using the current working directory)

	scope – Dictionary of key-value pairs specifying external input parameters

	
classmethod from_JSON(json_object, module_names='flowws_modules')

	Construct a Workflow from a JSON object.

	
classmethod from_command(args=None, module_names='flowws_modules', scope={})

	Construct a Workflow from a command-line description.

Stages are found based on setuptools entry_point specified
under module_names.

	Parameters:

	
	args – List of command-line arguments (list of strings)

	module_names – setuptools entry_point to use for module searches

	scope – Dictionary of initial key-value pairs to pass to child Stages

	
classmethod register_module(*args, module_names='flowws_modules', name=None)

	Register a named module to be loaded inside from_JSON or other functions.

This method is intended to be used as a decorator for Stage
classes in situations such as REPL loops or notebooks, where
modules need to be deserialized without necessarily creating a
standalone package and registering the endpoints through the
setuptools machinery.

Examples:

@flowws.Workflow.register_module
class TestStage(flowws.Stage):
 pass

@flowws.Workflow.register_module(name='OverruledName')
class Stage(flowws.Stage):
 pass

	
run()

	Run each stage inside this workflow.

Returns the scope after running all stages.

	
class flowws.Stage(**kwargs)

	Base class for the building blocks of workflows.

Stage objects specify a discrete set of operations within a
Workflow. Each Stage object has its own set of parameters and
functionality that are then run in sequence when the workflow is
run.

Stages can be instantiated within python by directly passing in
arguments they take as keyword arguments, for example:

stages = [Initialize(seed=13), Run(parameter=1.5)]

Stages also can be instantiated from the command line using
flowws.run (assuming they have been properly registered using
setuptools entry_points):

python -m flowws.run Initialize --seed 13 Run --parameter 1.5

	
classmethod from_JSON(json_object)

	Initialize this stage from a JSON representation

	
classmethod from_command(args)

	Initialize this stage from a command-line description

	
run(scope, storage)

	Run the contents of this stage

	
flowws.register_module(*args, module_names='flowws_modules', name=None)

	Register a named module to be loaded inside from_JSON or other functions.

This method is intended to be used as a decorator for Stage
classes in situations such as REPL loops or notebooks, where
modules need to be deserialized without necessarily creating a
standalone package and registering the endpoints through the
setuptools machinery.

Examples:

@flowws.Workflow.register_module
class TestStage(flowws.Stage):
 pass

@flowws.Workflow.register_module(name='OverruledName')
class Stage(flowws.Stage):
 pass

	
flowws.try_to_import(pkg, name, current_pkg=None)

	Import an attribute from a module, or return an error-producing fake.

This method is provided as a convenience for libraries that want
to easily expose modules with a variety of prerequisite libraries
without forcing the user to install prerequisites for the modules
they do not use. The fake is produced if an import fails while
importing the given package.

	Parameters:

	
	name – Name of the attribute to return from the module

	pkg – Package name (can be relative)

	current_pkg – Name of the current package to use (i.e. if pkg is relative)

	Returns:

	Either the attribute from the successfully-imported module, or a fake module object that will produce an error if evaluated

Command Line Utilities

flowws.run

Directly run a user-defined workflow from the command line

The flowws.run utility is used to execute a workflow from a brief,
text-only description. It works by finding modules installed using a
particular setuptools entry_point, which each parse their own
command-line parameters in their own way. Automatically-generated
documentation can be accessed in the standard way for flowws.run
via:

python -m flowws.run -h

Automatically-generated documentation for any module (for this
example, simply named Module) as:

python -m flowws.run Module -h

A complete workflow specification using modules Module1 and Module2
may look something like this:

python -m flowws.run Module1 --param-1 x --param-2 y Module2

JSON workflows defined by flowws.freeze can also be executed
using flowws.run:

python -m flowws.run workflow.json

A flowws_run script is also installed for this command for
convenience.

flowws.freeze

Save a user-defined workflow from the command line for later execution

The flowws.freeze utility is used to store a workflow description in
JSON form. It finds and parameterizes modules identically to
flowws.run, but saves the result to a file to run later
rather than immediately executing the workflow. Before the workflow
definition, it takes a single argument specifying the location to
store the resulting JSON file:

python -m flowws.freeze workflow.json Module1 Module2

A flowws_freeze script is also installed for this command for
convenience.

Storage API

	
class flowws.Storage.Storage

	Base class for file storage.

Storage objects expose methods for reading and writing of files
which could actually be backed by a database or archive file, for
example.

	
open(filename, mode='r', modifiers=[], on_filesystem=False, noop=False)

	Open a file stored within this object.

	Parameters:

	
	filename – Name of the (internal) file

	mode – One of ‘r’ (read), ‘w’ (write/overwrite), ‘a’ (append) and, optionally, ‘b’ (open in binary mode)

	modifiers – List of filename modifiers which will be appended to the filename, respecting the file suffix

	on_filesystem – If True, the file must exist as a real file on the filesystem; otherwise, a python stream object may be returned

	noop – If True, return a dummy file object instead that does nothing

	
open_file(full_name, mode)

	Open a file stored within this object as a real file on the filesystem.

The default implementation simply copies a stream object onto
the filesystem.

	
open_stream(full_name, mode)

	Open a file stored within this object as a stream.

	
class flowws.DirectoryStorage(root='.', group=None)

	Stores files directly on the filesystem.

	
open_file(full_name, mode)

	Open a file stored within this object as a real file on the filesystem.

The default implementation simply copies a stream object onto
the filesystem.

	
open_stream(full_name, mode)

	Open a file stored within this object as a stream.

	
class flowws.GetarStorage(target, group=None)

	Class to store files as records of getar-format files.

These can be zip, tar, or sqlite-formatted archives. Note that zip
and tar files will currently accumulate copies of files as they
are appended to or overwritten.

	
open_stream(full_name, mode)

	Open a file stored within this object as a stream.

 Python Module Index

 f

 		 	

 		
 f	

 	[image: -]
 	
 flowws	

 	
 	
 flowws.freeze	

 	
 	
 flowws.run	

Index

 D
 | F
 | G
 | O
 | R
 | S
 | T
 | W

D

 	
 	DirectoryStorage (class in flowws)

F

 	
 	flowws.freeze (module)

 	flowws.run (module)

 	from_command() (flowws.Stage class method)

 	(flowws.Workflow class method)

 	
 	from_JSON() (flowws.Stage class method)

 	(flowws.Workflow class method)

G

 	
 	GetarStorage (class in flowws)

O

 	
 	open() (flowws.Storage.Storage method)

 	open_file() (flowws.DirectoryStorage method)

 	(flowws.Storage.Storage method)

 	
 	open_stream() (flowws.DirectoryStorage method)

 	(flowws.GetarStorage method)

 	(flowws.Storage.Storage method)

R

 	
 	register_module() (flowws.Workflow class method)

 	(in module flowws)

 	
 	run() (flowws.Stage method)

 	(flowws.Workflow method)

S

 	
 	Stage (class in flowws)

 	
 	Storage (class in flowws.Storage)

T

 	
 	try_to_import() (in module flowws)

W

 	
 	Workflow (class in flowws)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to flowws’s documentation!

 		
 Workflows and Stages

 		
 Command Line Utilities

 		
 flowws.run

 		
 flowws.freeze

 		
 Storage API

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

